lunes, 14 de marzo de 2011

ÁCIDOS NUCLEICOS

ÁCIDOS NUCLEICOS


1. DEFINICÓN


  Los ácidos nucleicos son macromoléculas, polímeros formados por la repetición de monómeros llamados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, así, largas cadenas o polinucleótidos, lo que hace que algunas de estas moléculas lleguen a alcanzar tamaños gigantes.

El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico.

2. TIPOS DE ÁCIDOS NUCLEICOS

  
Existen dos tipos de ácidos nucleicos: ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian:
  • Por el glúcido que contienen: la desoxirribosa en el ADN y la ribosa en el ARN;
  • Por las bases nitrogenadas que contienen: adenina, guanina, citosina y timina, en el ADN; adenina, guanina, citosina y uracilo, en el ARN;
  • En los organismos eucariotas, la estructura del ADN es de doble cadena, mientras que la estructura del ARN es monocatenaria, aunque puede presentarse en forma extendida, como el ARNm, o en forma plegada, como el ARNt y el ARNr, y
  • En la masa molecular: la del ADN es generalmente mayor que la del ARN.


3. NUCLEÓSIDOS Y NUCLEÓTIDOS 


Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y uno o varios grupos fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.



Listado de las bases nitrogenadas
Las bases nitrogenadas conocidas son:
  • Adenina, presente en ADN y ARN  
  • Guanina, presente en ADN y ARN
  • Citosina, presente en ADN y ARN
  • Timina, exclusiva del ADN
  • Uracilo, exclusiva del ARN.


4. ADN

  
El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.
Excepcionalmente, el ADN de algunos virus es monocatenario, es decir, está formado por un solo polinucleótido, sin cadena complementaria.



5. ARN


El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.
Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia, existen varios tipos de ARN:


   -El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma.

   -El ARN de transferencia existe en forma de moléculas relativamente pequeñas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína.
 - El ARN ribosómico es el más abundante se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.

lunes, 7 de marzo de 2011

LAS PROTEINAS

LAS PROTEINAS




1. DEFINICÓN

    Las proteínas son biomoléculas formadas por cadenas lineales de aminoácidos.
Las proteínas desempeñan un papel fundamental para la vida y son las biomoléculas más versátiles y más diversas. Son imprescindibles para el crecimiento del organismo.


2. CARACTERISTICAS
  
   Los prótidos o proteínas son biopolímeros, es decir, están constituidas por gran número de unidades estructurales simples repetitivas (monómeros). Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las diferencian de las disoluciones de moléculas más pequeñas.
Todas las proteínas tienen carbono, hidrógeno, oxígeno y nitrógeno y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, 16% de la masa total de la molécula; es decir, cada 6,25 g de proteína contienen 1 g de N.


3. ESTRUCTURA
  
   Es la manera como se organiza una proteína para adquirir cierta forma. Presentan una disposición característica en condiciones fisiológicas, pero si se cambian estas condiciones como temperatura, pH, etc. pierde la conformación y su función, proceso denominado desnaturalización. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos.


4. PROPIEDADES DE LAS PROTEINAS

  • Solubilidad: Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH, se pierde la solubilidad.
  • Capacidad electrolítica: Se determina a través de la electroforesis, técnica analítica en la cual si las proteínas se trasladan al polo positivo es porque su molécula tiene carga negativa y viceversa.
  • Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.
  • Amortiguador de pH : Actúan como amortiguadores de pH debido a su carácter anfótero, es decir, pueden comportarse como ácidos (aceptando electrones) o como bases (donando electrones).

5. CLASIFICACIÓN

SEGÚN SU FORMA:
-Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina, colágeno y fibrina.
-Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.
-Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos).

 SEGÚN SU COMPOSICIÓN QUÍMICA:

-Simples: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas).
-Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas con un grupo prostético

6. FUNCIÓNES

Las proteinas realizan una enorme cantidad de funciones diferentes, entre las que destacan:
  • Estructural (colágeno y queratina)
  • Reguladora (insulina y hormona del crecimiento),
  • Transportadora (hemoglobina),
  • Inmunológica (anticuerpos),
  • Enzimática (sacarasa y pepsina),
  • Contráctil (actina y miosina).
  • Homeostática: colaboran en el mantenimiento del pH,
  • Transducción de señales (rodopsina)
  • Protectora o defensiva (trombina y fibrinógeno)